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The motions resulting when a linear, stable salt gradient is heated uniformly 
and at  a steady rate from below are investigated theoretically and by laboratory 
experiment. A convecting, growing layer is first formed whose depth, tempera- 
ture and salinity differences from the fluid above, are all increasing as tg. The 
way in which these quantities depend on the salinity gradient and heating rate 
is also predicted, and verified experimentally. A stability criterion is then de- 
veloped which describes the breakdown of the diffusive boundary layer ahead 
of the advancing front, and leads to an expression for the thickness of the bottom 
layer when a second layer forms above it. The predicted form of dependence of 
layer thickness on the given parameters is again borne out by the experiments. 

1. Introduction 
In  an earlier paper (Turner & Stommel 1964) a qualitative description was 

given of the motions which result when a linearly stratified salt solution is 
heated uniformly from below. Convective stirring first produces a layer at  the 
bottom of the containing vessel which is well mixed in both heat and salt, 
and which grows by incorporating fluid from above. This layer does not continue 
to deepen indefinitely, however; at some point a second layer forms on top of 
it, and this behaves in the same way. In  time, many such layers can form, with 
sharp interfaces separating the turbulent convecting regions, and these interfaces 
stay in nearly fixed positions until the bottom one disappears as the lowest 
two layers merge. The system can be maintained in this state because of the very 
different molecular diffusivities of heat and salt: heat can more easily escape 
from the top of a layer to cause a convective overturning above, while the salt 
mostly stays behind and preserves a net stable density difference across the 
interface. 

There is now an increasing volume of observational evidence to suggest that 
a step-like structure is characteristic of the ocean and also of some lakes. Instead 
of smooth gradients of temperature and salinity, one often observes well- 
mixed layers separated by relatively sharp interfaces. In  some cases at  least, 
the distributions of salinity and temperature are similar to those just described 
for the laboratory experiment (see, for example, the observations at the bottom 
of the Red Sea described by Swallow & Crease (1965), and those in an Antarctic 
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lake reported by Hoare (1966)). The hope that a closer study of the small-scale 
laboratory models will lead to a quantitative understanding of such phenomena 
provides the immediate incentive for the present work. 

The only part of this problem which has so far been treated theoretically is 
the initial behaviour of a stable salinity gradient when a destabilizing tempera- 
ture gradient is applied to it. Veronis (1965) and Sani (1965) showed that the 
onset of convection should occur in an overstable mode, rather than as an ex- 
ponentially growing motion (as in the ordinary convection problem with heat 
alone). Although the boundary conditions assumed are not exactly right for the 
transient case being considered here, Shirtcliffe (1967) has confirmed experi- 
mentally that an overstable oscillation is the relevant mode of breakdown. 
The initial oscillatory behaviour will be documented further in this paper, but 
most of the experiments reported here (and all those described earlier by Turner 
& Stommel) relate to the later stages of an experiment when the first layer has 
already formed. That is, the heating rate will usually be so great that convection 
can be supposed to begin in a time short compared to the timescale of growth of 
the bottom layer, and the earliest stages of formation of the first layer will be 
ignored. 

It was recognized from the beginning that one of the main problems posed by 
these experiments with a heated salinity gradient is the relation of the layer 
depths to the magnitude of the salinity gradient and the heating rate. There is, 
however, a complicating factor which led to the deferment of this part of the 
study. It was found that side-wall heating can also produce layering in a stable 
salinity gradient, as convection cells are propagated horizontally into the in- 
terior. A very small temperature difference between the fluid and the con- 
tainer can thereby produce interfaces which are iinrelated to the heating from 
below, but which can determine the position where a new layer begins to form. 
For this reason, the first quantitative experiments (Turner 1965) were of a 
different kind. Instead of being produced from a gradient, two uniform layers were 
set up directly with a density interface between them, and the transports of heat 
and salt across this interface measured as a function of the temperature and 
salinity differences. The information thus obtained represents part of that 
necessary for a full understanding of the phenomenon, but some quantities, such 
as the ‘eddy transport coefficients’ relating the fluxes to the mean gradients, 
cannot be defined until the depths of the layers are known. 

The present paper returns to the original problem, the establishment of layers 
by heating from below. The anticipated difficulties due to side-wall heating have 
been minimized by concentrating only on the period of growth of theJirst layer, 
up until the time a second layer forms above it. The work to be described falls 
into two nearly separate parts. First, theoretical arguments will be presented 
which relate the rate of advance of the top of the first layer to the salinity gradient 
and heating rate (both of these being regarded as constant) and these relations 
will be tested quantitatively through laboratory experiments. Secondly, the de- 
velopment of a temperature boundary layer in the stationary fluid ahead of the 
advancing interface will be investigated. A Rayleigh number criterion for 
the breakdown of the second layer will be suggested, based on the initial proper- 
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ties and the developing temperature distribution. This leads to an explicit form 
for the dependence of the maximum depth of the bottom layer on the salinity 
gradient and heating rate, and this too is tested by experiment. 

2. The growth of the bottom layer 
2.1. Theory 

In  this and all subsequent sections it will be assumed that the initial state is one 
of linear salinity gradient dS/dz in a deep layer which is at rest above a solid, heat 
conducting bottom. The temperature is uniform, until at  time t = 0 a constant 
heat flux is applied through the bottom and is maintained at  H cal/cm2/sec at  
all later times t. This heating soon produces a well-stirred growing layer as dis- 
cussed earlier; both temperature and salinity are supposed uniform in this layer 
and it is assumed that there is an abrupt step of both temperature and salinity 
at its top. That is, the molecular diffusion of heat and salt ahead of the growing 
convective layer is neglected in this section, though it will be considered 
explicitly later. 

From the heat and salinity balances in the bottom layer of depth h it follows 
immediately that 

Ht = -pchAT (1) 

and AS = pi(as/az), (2) 

where AT and A S  are the temperature and salinity steps at  the top of the well- 
mixed layer at  time t (these are both negative, as is d S / d z  if z is taken to be positive 
upwards), c is the specific heat, and p is a characteristic density (deviations from 
this are supposed to be small). 

A relation between AT and AS may be obtained by making one of several 
possible assumptions about the energy balance in the bottom layer. Although 
this will later be rejected as unrealistic, a useful limiting case is obtained by 
assuming first that all work done by heating from below is used to change the 
salinity distribution. The equivalent of this assumption was justified by Ball 
(1960) in a discussion of the change in inversion height due to surface heating, 
and was also used by Turner & Kraus (1967) in a study of a laboratory experi- 
ment related to the seasonal thermocline. The difference in the present context is 
that two components now contribute to the potential energy, and their effects 
will be kept distinct. This statement of conservation of energy implies that the 
potential energy (relative to the bottom of the tank say) of the original linear 
salinity gradient, and the final step distribution of salinity and temperature, 
must be the same. Now the change of potential energy per unit mass due to the 
addition of heat is &gah2AT, where a is the coefficient of expansion. The change 
due to the stirring of the bottom of the salt distribution to make it uniform is 
Agph3dSldz where /3 is the corresponding coefficient for salt, i.e. the proportional 
change in density for unit salinity change. It follows that 

aAT = - +ph(dS/dz) 
or comparing with (2) 

aAT = -+PAX. 

(3) 

(4) 
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(Note that a! is a negative quantity and P is positive.) Thus with this assumption 
about the energy balance, the temperature and salinity differences remain 
proportional to one another as the layer grows, and there is a net stable density 
step at  its top. The corresponding distributions of properties in this case are 
sketched in figure 1 a. 

+ 
p increasing 

+ 
p increasing 

FIGURE 1. The distributions of (i) density due to salinity, (ii) density due to temperature, 
(iii) the net density, implied by the two assumptions examined in the text: ( a )  all the poten- 
tial energy released in the temperature field is used to redistribute the salt; ( b )  the top of 
the mixed layer is marginally stable. Heating has been assumed at  the same rate and for the 
same time in the two cases. 

The limiting energy condition assumed above can clearly not be realized in 
practice. Dissipation has been neglected, and the fact that kinetic energy is 
released throughout the layer (not just at  the top) has been ignored. At  the 
other extreme, one can assume that the layer depth is limited not by the process 
of entrainment across a density step, as implied above, but because the net 
density gradient is always just unstable at  its top. This implies instead of (4) that 

aAT = -PAX, ( 5 )  

i.e. that the density steps due to temperature and salinity are equal and opposite 
(as shown in figure 1b) .  Because the condition (5) is found to be closely satisfied 
in the laboratory experiments reported later, the analysis will be continued 
using this second assumption. 

The equivalent of these two assumptions has recently been used by Lilly 
(1967) in a treatment of radiating cloud layers under a strong atmospheric inver- 
sion. He found that it was impossible to decide between them on the basis of the 
available observations, and certainly no measurements in the ocean are yet 
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accurate enough for this purpose. It therefore remains an open question whether, 
on a larger scale, a faster growth of a layer and a density step could occur because 
some fraction of the kinetic energy due to heating is used for entrainment. For 
our present purpose this is not important; provided only that the fraction used 
in this way is assumed to be constant, the functional form of all the relations to be 
obtained will remain the same, since AT and AS will still be proportional to one 
another. 

From (2) and (5) it can be seen that h also is proportional to AT or A 8  during 
the growth of a layer, with the constant of proportionality depending only 
on the initial salinity gradient (cf. equation (3)). Using these with (1) gives now 
the dependence of h, AT and AS separately on time : 

h = H$S,tt* (6) 

and gaAT = -SPAS = H$ X$ tg, (7 )  

where H ,  = - gaH/pc and S ,  = - BgP(dS/dz). (8) 

These parameters are defined in this way (including g the acceleration due to 
gravity) so that they specify the physically relevant buoyancy flux and the 
corresponding dynamical effect of the density gradient. 

2.2. The experimental technique 

The equipment used is very simple, but it must be described briefly before 
the results of the quantitative tests of the above relations are presented. All 
the experiments were carried out in a plastic circular cylinder, 29 cm in diameter 
and about 25cm deep. It was fitted with an aluminium bottom 6mm thick; 
below this was an air space 5 cm deep, which was well insulated below and round 
its edge. A regular array of heater wires was strung in the air space on insulating 
supports, to provide heating which was fairly uniform over the base (although 
extreme precautions were not taken to make it so). The rate of heating for various 
settings of a rheostat supplying the voltage to the heater elements was measured 
directly in a preliminary series of experiments, by recording the rate of change 
of temperature in a well-stirred layer of fresh water in the cylinder. 

The desired linear salinity gradients were set up using a method described by 
Oster (1965), which is sketched in figure 2. Two tanks of the same shape, con- 
taining equal depths of salt solution of different densities and at room tempera- 
ture were joined by a wide pipe. The liquid in the lighter tank was vigorously 
stirred while its gradually varying contents were slowly drained into the bottom 
of the experimental cylinder. It may easily be shown that if the rate of flow 
out of the stirred tank is just twice that into it, and stirring is complete (conditions 
which were closely satisfied in our case) then the resulting density gradient will 
be linear. Knowing the weight of salt, the volume of water used and the dimen- 
sions of the experimental tank, the salinity gradient can be deduced; and this 
was the method used to compute the gradient in the experiments, after a few 
runs in which it was checked directly by withdrawing and weighing samples. 

When the salinity gradient was set up, heating was begun as soon as possible 
after the filling pipe was withdrawn and the motions had died away, so that it 
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was reasonable to assume that the linear gradient extended to the bottom. In  
some of the runs, a 16 em diameter ‘guard ring’ of Perspex was used to isolate 
the centre of the tank. No difference could be detected between the experiments 
carried out with and without this, supporting the assumption that heating 
through the side walls was unimportant. The quantities recorded as functions of 
time were the bottom-layer temperature (usually with a bulb thermometer held 

Stirrex 

Mixing tanks 

Metal bottom 

Perspex 
6 cylinder 

Heater 
coils I- 

( 
Insulation 

FIGURE 2. A sketch of the experimental equipment, showing the cylinder, the method of 
heating from below, and the device used for filling with a linear salinity gradient. 

1 cm above the bottom of the tank, but occasionally with a faster responding 
thermistor) and the mixed layer depth (estimated visually by averaging by eye, 
with a few crystals of dye added to mark the convecting layer). Experiments were 
conducted over a range of conditions in which there was a tenfold variation of 
both density gradient and heating rate; typical values of these parameters were 
p-l(dp/dx) = 10-3cm-l and H = 10-1 cal/cm2/ see. 

2.3.  The experimental results 

The relations ( 6 )  and (7) ,  or the more basic assumptions from which they are 
derived, can be tested by plotting the results in various ways, and not all the 
possible variations will be covered here. First, it  will be shown that the de- 
pendence on time is of the indicated functional form, using an individual run 
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as an example. Pairs of measured parameters from many experiments will then 
be plotted in a form which allows a numerical evaluation of the constants of 
proportionality, and hence a quantitative test of the assumptions. 

t (minutes) 

FIGURE 3. An example of the measurements on a growing convecting layer, with 

S, = 1 . 8 ~  IO-~S-~ and H* = 1.4~ 10-2cmas-3. 

In ( a )  the square of the layer depth h and in ( b )  the square of the temperature difference 
AT are plotted against time. 

The measurements from EL single run, chosen for illustration because it in- 
cluded a wide range of parameters and many individual readings, are plotted in 
figure 3. The squares of the depth and the temperature difference are well re- 
presented as linear functions of time, as suggested by (6) and (7). Notice however 
that the line of best fit does not pass through the origin; this reflects the 
fact that heating of the fluid at  a steady rate did not begin immediately the 
heater elements were switched on, which was the point taken as t = 0. Some of 



190 J . S.  Turner 

the non-linearity near the origin must also be due to the finite time needed to  
form a convecting layer once heating has begun. When the virtual origin of time 
has been established in this way, plots of h and AT against t on logarithmic scales 
also strongly support the t4 dependence for both these quantities. 

X .  
X H  x .  

X 

xx *t X 

0 2 4 6 8 

H,/S, (unit: cm2 s-I) 

FIGURE 4. A test of equation (6) :  experimental values of h2/t are compared with H,/S, 
calculated from the known heating rate and the initial salinity gradient. The two symbols 
are related to the effect of molecular diffusion which has been neglected in this section: they 
will bo defined later in the caption to figure 6. 

The slope of the line of figure 3u of course also allows one to make an indi- 
vidual numerical comparison between theory and experiment. As measured, it is 
6.7 x 10-2cm2 s-l and the predicted value from (6) is H,/S, = 7.8 x om2 s-l, 
using the known initial salinity gradient and heating rate. This latter ratio 
is also a measured quantity with its own errors, and the 15 % difference between 
the two values is not significant. This same procedure has been carried out for 
many such experiments, and the results are plotted in figure 4. If one regards 
each point as an independent measure of the constant of proportionality in (6) 
then the mean value is 0.89, with standard error k 0.03, i.e. the measured rate of 
growth of the square of the layer depth as a function of time is 11 yo less than 
predicted by (6) using H ,  and S,. This difference is statistically significant, 
and can probably be attributed to the escape of some heat from the top of the 
layer, an effect which has not yet been considered. Notice that the assumption 
( 5 )  has been fully justified by these experiments; if entrainment were important 
the discrepancy would be in the other direction, with the constant becoming as 
large as 3 if the relation (4) had been used instead of (5). 
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For most runs, graphs of h against AT were also drawn as an extra check on 
the consistency of the results and as a simple means for extracting numerical 
values. The scatter about a straight line was usually greater in this form be- 
cause both plotted quantities were then subject to independent errors of measure- 
ment. One obtains in this way a direct comparison between the magnitudes of 
the density steps due to salinity and temperature. The mean difference between 
them was about 10% (which is barely significant), with a tendency for EAT 
to be greater than PAS, i.e. for the layer (assumed well mixed in heat and salt) 
to be slightly lighter than the fluid above it. Thus again there is no evidence that 
entrainment is important. 

3. A theory for the formation of a second layer 
3.1. The diffusion of heat ahead of the advancing interface 

s o  far it has been assumed that all the salt and heat in the well-mixed bottom 
layer are confined below a sharp interface, where the properties change dis- 
continuously. On this basis it has been shown that the depth of the layer and 
the temperature and salinity steps at  its top all increase like t*, and these pre- 
dictions are in agreement with the observations. When one considers the criterion 
for formation of a second layer, however, it is essential to take the molecular 
processes into account. The diffusion of salt will again be ignored, but in this 
section the temperature structure ahead of a front, whose position and tempera- 
ture are changing with time in the manner described above, will be examined. 

It is helpful first to consider the diffusion equation relative to the position of 
a front moving vertically with afixed velocity w (taken as positive). This is 

aT aT a2T 
at Wz= K s j  

and if also the temperature at  the front x = 0 is held constant at  T = To, (9) has 

T = To exp ( - WX/K), the solution 

independent of time t. Whenwisvaryingas it does in the problem of interest here, 
like w = Bt-*, say, where B is a constant, one can avoid the difficulties associated 
with a transformation to a non-uniformly moving frame of reference by solving 
the ordinary one-dimensional diffusion equation (relative to fixed axes) with 
the boundary conditions 

and T- tO  at <=  co, allt 

(where A is another constant, and 6 = z + 2Bt4 is the distance from the bottom). 
Following the notation of Carslaw & Jneger (1947, p. 45) the solution is 

(9) 

(10) 

-- 

(11) 1 T = At* on < =  2Bt: 

At% erfc ( c / 2 ( ~ t ) 4 )  
i erfc (B/K*) 

- .___ T =  

In  the limit where B 2 / ~  9 1, i.e. the velocity of advance of the front is much 
larger than a diffusion velocity, (12) may be written in the form 

) .  (13) 
2 

T = Atf exp [ - $1 exp [ - gd (I - + smaller terms 



192 J .  S.  Turner 

If also one is interested in the behaviour at small distances from the front and 
such large times that both z/Bt4 and z 2 / 4 ~ t  are small, then (13 )  simplifies to 

T = At4 exp ( - B Z / K t * ) .  (13a)  

Thus the solution near the advancing front is again of the exponential form (lo), 
with the instantaneous temperature and velocity replacing the constant values 
used earlier. How well the conditions of the experiments satisfy the above 
restrictions will be examined later, but for the present the argument will be 
continued using ( 1 3 a ) ,  without further comment about its limits of validity. 

3.2. T h e  relation between the difjfcsive and the convecting layers 

The solution ( 1 3 a )  can now be used to express certain properties of the diffusive 
boundary layer in terms of the parameters S,  and H* which have been used to 
describe the growth of the bottom layer. The temperature gradient at  the 
edge z = 0 is, from ( 1 3 a ) ,  (aT/az),=, = -AB/K, independent of the time, and 
in fact the whole shape of the temperature profile remains constant with time, 
with the depth of penetration proportional to the temperature difference. Com- 
paring the assumed forms of velocity and temperature variation with (6) and (7)  
this gradient can be put in the form 

it therefore depends only on the heating rate, not the salinity gradient. A con- 
venient (but arbitrary) measure of the ‘ thickness of the boundary layer ’ S is 
defined by ATIS  = - &(aT/az),=,, which implies that the exponential profile 
has been replaced by a linear distribution containing the same quantity of heat. 
With this definition the ratio of S to the layer depth h is (from (6) and (7)) 

~ / h  = ~ ( K s * / H * ) ,  (15) 

constant throughout an experiment (and already available from the analysis 
leading to figure 4). The ratio of the heat contained in the developing boundary 
layer ahead of the well-mixed layer to that retained in the layer itself is just half 
the ratio (15). 

The criterion for the validity of the exponential solution can now be re- 
examined in this notation. Putting B in terms of €€* and S, one sees that 

B 2 / K  = H , / 4 ~ 8 ,  = h/S; 

so the condition that B 2 / K  should be large is entirely equivalent to the condition 
that S/h should be small compared with 2. For the experiments to be reported 
here, S/h lies between 0.054 and 0.48. At the upper end of this range, where nearly 
20 % of the total heat is diffusing ahead of the growing layer, some modification 
of the exponential profile (and of the behaviour of the growing layer) may possibly 
be detectable, but for most of the experiments the argument used above should 
be valid. 
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3.3. The criterion for breakdown 

The mechanism for instability which leads to the formation of a second con- 
vecting layer can now be discussed. The physical picture emerging from the 
previous section is this: for a given salinity gradient and heating rate, a de- 
stabilizing temperature difference which increases with time is being applied over 
a depth 6 which is also increasing. Eventually, a parameter having the form of a 
Rayleigh number, and depending on the initial salinity gradient and the in- 
stantaneous values of AT and 6, must reach a critical value and convection will 
begin. The appropriate form of the stability criterion to adopt is of course the 
main question still to be resolved. 

Veronis (1965) has treated the case where constant linear gradients are 
supposed to exist over a deep region of fluid between free boundaries. He has 
shown, as mentioned earlier, that in the case where the salinity is stabilizing 
and the temperature destabilizing, this system should first become unstable 
(to infinitesimal disturbances) in an overstable mode. The criterion for onset of 
convection is 

where 

Note particularly that K ,  the thermometric conductivity for heat appears in 
both R and R', which otherwise have the form of Rayleigh numbers based on 
density differences due to heat and salt and on the layer depth d .  When R' is 
large, i.e. R' 9 Yn4, the system as a whole breaks down just before the hydro- 
static density distribution becomes heavy at  the top. This is very different from 
the prediction for the growing mode, to obtain which the unstable density 
gradient due to heat must become substantially greater than the stabilizing 
gradient due to salinity. 

One would expect that the same ideas would carry over, qualitatively at  
least, to the case of interest here, where not only the temperature difference 
is increasing as the limit of stability is approached but also the depth over 
which it is applied. The main difference from Veronis's original interpretation 
arises because it can no longer be assumed that R' is large. For if the depth d 
in (17) is identified with the characteristic thickness 6 used in (15), 

whereas 

Thus R'/R = 26/h, which has been shown in the last section to be small for the 
cases of interest here. As the boundary layer grows in a given experiment, R' 
will increase from zero but remain a fixed fraction of R, and the condition for 
breakdown is therefore that the ordinary Rayleigh number R, based on heat 
alone, should exceed a critical value. For small 6/h this value will be little different 
from the critical Rayleigh number R, which applies when no salt is present. This 
dominance of heat over salt arises because the Rayleigh number depends mainly 

13 Fluid Mech. 33 
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on the thickness S of the boundary layer. This is determined by the diffusion 
of heat, and the whole step of temperature is applied across S, whereas the cor- 
responding salinity difference is that due to the original linear gradient, almost 
unchanged by diffusion. (In the opposite limit, when the heating rate is so small 
that the diffusion velocity for heat is much larger than the rate of advance of 
the front, (16) implies that the fluid above cannot become unstable in this 
way, because the temperature gradient remains small compared with the initial 
salinity gradient. Intermediate conditions require a more careful discussion.) 

The final step of this argument is the expression of the critical Rayleigh number 
in terms of the measurable parameters h, H ,  and 8,. Substituting for 6 from (15) 
in (1 7 )  gives 

Using (6) and (7 )  to eliminate AT, and rearranging, leads to an expression for the 
'critical depth' h, (the maximum depth of the bottom layer before a second 
forms above it) in terms of R, 

It is also convenient to have this relation in terms of the flux of density deficit 
p* = H,/g and the initial density gradient due to salt dp,/dz = 2pS,/g 

since it is in this form that it will be tested experimentally. 
It is impossible to write down a definite numerical value for R,, since the sta- 

bility problem has not been solved for exponential profiles, nor do we know 
exactly what boundary conditions to apply, For a linear profile and with a 
quasi-static assumption, R, z 103, but there remains the question of the replace- 
ment of a non-linear profile by a linear one. There are several relevant, but in- 
conclusive, studies which should be mentioned. Howard (1964) has deduced a 
value for R, for an error function profile, which is of the same order of magnitude 
as the ordinary criterion when the depth scale is defined appropriately. Currie 
(1967) has carried out a linear stability analysis for the time-dependent case, 
representing a non-linear profile by an ' equal area' straight line equivalent (ex- 
actly the assumption which was used in 53.2 to define 6). His analysis suggests 
that R,, based now on the total depth, can vary from slightly less than the 
usual theoretical value to several times this as the heating rate is increased, in 
agreement with the experimental result of Soberman (1959). 

The uncertainties inherent in applying any of these results to the case of 
interest are so great that no numerical value will be assumed. Instead, the 
experimental results will be used to test the predicted functional form (21) ,  
and the main check on the theory will be the adequacy of this in representing the 
power law dependence on p* and dp,/da. A mean experimental value of the con- 
stant of proportionality will also emerge, however, and the corresponding value 
of R, should not be too different from that suggested in other contexts if it  is to 
be claimed that there is good agreement between theory and experiment. 
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4. The formation of a second layer: experiments 
4.1. The oscillatory breakdown 

The arguments of $3.3 have depended on the assumption of the overstable 
criterion (16) as the relevant one for instability. The results of Shirtcliffe (1967) 
have been quoted to give some experimental support to this, but it seemed de- 
sirable to attempt a further direct confirmation under the conditions of the 
present experiment. Measurements were made using thermistors of the tempera- 
ture at a point, and the temperature difference between two points separated by 
4 em in the vertical, at various heights above the bottom of a linearly stratified 
tank of salt solution. Heating was supplied at a much smaller rate than for 
the main body of the experiments, so that the initial instability could be studied 
(rather than the growth of the layer once it had formed). An oscillatory behaviour 
was observed on both types of records, but we found (as did Shirtcliffe) that the 
phenomenon was much more clearly shown using the difference method. 

With the probes 4 em and 1 ern from the bottom of the tank, the temperature 
gradient increased smoothly and steadily for a while; the record gradually 
became more noisy, until bursts of regular oscillations appeared and died away, 
as is shown in the section of record labelled a in figure 5 .  A little later, many 
cycles of an oscillation with nearly constant amplitude were observed, until 
finally the amplitude increased and the layer broke into convective motion 
(trace b).  This behaviour is rather different from that reported by Shirtcliffe, who 
demonstrated an oscillation with steadily increasing amplitude (his figure Z), but 
these differences could well be due to the higher sensitivity of his recording 
technique (which used thermocouples). In  that part of his record where the 
sensitivity was lower, there is an interval of nearly steady oscillations with an 
amplitude comparable with ours. Since the absolute values of the temperature 
gradient were not accurately known for the recordings reproduced in figure 5 ,  
it is not possible to check the criterion for breakdown directly against theory. 
The period of the oscillation is well defined, however; as measured from figure 5 
it is 20sec. This can be compared with the predictions of Veronis (1965), who 
showed that the period of an overstable oscillation at  marginal stability should 
be [ 3 ( u  + K ) / K ] *  (i.e. about 5 )  times the Brunt-Vaisala period based on the initial 
salinity gradient, and that the factor decreases to about 3 when the horizontal 
wave number is large. In  our experiment this latter period (calculated from the 
mean linear salinity profile) is 5.7sec; the measured value is indeed several 
times this, an agreement which is as good as can be expected in view of the 
great differences between the experimental conditions and those assumed in the 
theory. 

Similar recordings of temperature gradient were made with the probes just 
ahead of a growing layer, in order to study the breakdown of the second layer 
which is of direct concern here. There was now the extra difficulty that fluctua- 
tions of the measured gradient were also produced by the oscillations of the inter- 
face due to the convection in the layer below. On several records, however, such 
as that reproduced in figure 5 (c), there is clear evidence of intervals of regular 

13-2 
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oscillations with the period characteristic of the overstable mode, superimposed 
on slower, more irregular motions. This therefore does seem to be the mechanism 
of instability, whether the lower boundary is moving or not. 

0 2 4 6 

t (minutes) 

8 

FIGURE 5.  Fluctuations in temperature gradient recorded with two thermistors, when 
a linearly stratified salt solution was heated from below. Only differences in the gradients 
are relevant, and the records have been shifted arbitrarily along both axes for convenience 
of reproduction. 

( a )  Thermistors +cm and 1 cm from the bottom of the tank. Bursts of oscillations appear 
and then die out again. 

( b )  This record is from the same run as ( a )  with a gap of about one minute. Nearly steady 
oscillations eventually grow in amplitude and become irregular. 

(c) Thermistors 8kcm and 9 cm above the bottom of the tank, ahead of an advancing 
interface. Similar oscilrations to those in ( b )  are seen, superimposed on larger slower dis- 
turbances. 

4.2. Experimental determination of layer depths 

The experiments described in 552.2 and 2.3 were continued until the bottom 
convecting layer stopped growing and a second formed above it; the same data, 
with the addition of this maximum depth, are available to  test the theory 
of 53. In fact rather more experiments were suitable for this purpose than were 
used in figure 4, since the final layer depth was well defined even in cases where 
its rate of growth was irregular and hard to measure. 

Again there is a wide choice of methods of presentation; two have been chosen 
which test the several predictions contained in (21). The power law dependence 
is most easily checked by plotting (h,/p) (dp,/dx), which is proportional to the den- 
sity step a t  the top of the layer when it forms, against the heating rate (orp,) 
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on logarithmic scales. This plot is shown in figure 6. A line of slope2 is drawn 
through the points; to within the accuracy of measurement, the experimental 
results are well described by an equation of the form (21).  In  order to assess the 
possible effects of deviations from the limit of small S/h (assumed in $3.1), two 
different symbols have been used in figure 6 (also in figure 7 ,  and earlier in figure 
4). A division has been made (arbitrarily) at  a value of 6/h  = 0.20; dots denote 
experiments with S/h < 0.20, and crosses, S/h > 0.20. Though several of the points 
with large deviations from the line drawn in figure 6 do correspond to the larger 

3 x  l oKh  j x 7 x loK6 1 x z 3 x 10- 5 x I O - j  

P* (ems+) 

FIGURE 6. The product of the measured maximum depth of the bottom layer h, and the den- 
sity gradient due to salinity (dp,/dz), plotted against the density flux due to heating, on 
logarithmic scales. The symbols denote different ranges of values of S /h ;  0 S /h  < 0.2, 
x S/h > 0.2. A line with slope 3, suggested by equation (21), is drawn through the points. 

Slh, it is clear that the experiments are not accurate enough to investigate this 
effect in detail, and that the simple theory gives an adequate description to the 
present accuracy. The same conclusion applies to figure 4; the experiments with 
the larger S/h (those with small heating and growth rates) do not deviate signifi- 
cantly from the line which can be drawn through the rest of the points. 

To test the quantitative predictions of (21) ,  it is convenient to plot 
(h,/p) (dp,/dz) against pf on linear scales, and this has been done in figure 7 ,  with 
all the physical constants (evaluated at  the appropriate temperature) included 
with p i  so that both scales are non-dimensional. The slope of the line drawn to 
fit these points is Ri = 12.5 with standard error 0.3. This implies a value of 
R, z 2-4 x lo4, an order of magnitude larger than the simplest extrapolation 
of existing theory would suggest. All the corrections to (13a)  which would be 
introduced by using (13)  or by relaxing the condition B 2 / K  9 1 will tend to 
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reduce the effective thickness of the boundary layer and hence also reduce 
R,. The measured maximum layer depth is, however, predicted to better than a 
factor of two, with any reasonable choices of the definition of 6 and the numerical 
value of R,, and without the need to introduce any further empirical constant. 

h 

N 

F; 3 

2 
Q . 1 2  s. 

1 

x XX. 

h 

FIGURE 7 .  The same data as in figure 6, plotted now on linear scales, with p! and all the 
physical parameters grouped along the abscissa. The symbols have the same meaning as 
before. 

5. Discussion 
In  conclusion, the results obtained above will be fitted into the general 

picture of what is now known about transfers in a liquid containing both tem- 
perature and salinity differences, and the new questions raised by them will be 
discussed further. The understanding of the growth of the first layer described in 
fj 2 is in a satisfactory state; experiment agrees with the theory based on a neglig- 
ible extra entrainment at  the top of the layer due to the conversion of turbulent 
kinetic to potential energy. There does, however, remain the doubt (as with all 
laboratory convection experiments) whether this would continue to be true on 
a much larger scale. The criterion which determines the maximum (critical) 
layer depth at  which a second layer forms above the first also seems to be satis- 
factory. One should emphasize here the good agreement between the theoretical 
andmeasured functional forms; the discrepancy between the numerical constants 
merely points to  the need for further development of time-dependent stability 
theory. At the very least, the results obtained here should remove any doubts 
about the importance of bottom heating compared with that from the sides 
during the growth of the lowest layer. 

All the ingredients are now available which makes it possible to  study the 
growth of a whole series of layers above the first. Experimentally it may be 
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difficult to eliminate entirely, in the laboratory, the effects of side-wall heating 
(as discussed earlier). On a geophysical scale the one-dimensional case will 
certainly be relevant, however, and theoretically the way is clear. Given the 
heating rate and salinity gradient, the present work can be used to determine 
when a new layer will form. The rates of transfer of heat and salt between the 
layers already formed, and hence the net rate of heating affecting the topmost 
interface, can be calculated using the previous set of experimental results 
(Turner 1965). It seems to be a matter for straightforward computation to re- 
produce the observed sequence of events: layer formation at the top, and the 
mixing of the bottom two layers when the density difference between them be- 
comes small. It would be useful to discover if a quasi-steady state could be 
achieved, and if so, the number of layers which can be maintained in various 
circumstances and the mean temperature and salinity gradients associated with 
them. 

Finally, some remarks can be made about the related situation of a stable 
temperature gradient made unstable by adding salt at  the top. In  this case, the 
vertical transport takes place in long narrow convection cells (‘salt fingers ’) 
across interfaces between turbulent convecting layers. The fluxes of salt and heat 
across established interfaces of this kind have been measured in the laboratory 
and the results applied to oceanic observations (Turner 1967). An important point 
made qualitatively in the paper quoted is that, so far as the formation of layers 
from a gradient is concerned, the salt finger case and the one studied in the present 
paper are entirely symmetrical: the basic physical parameter in both is a net 
unstable buoyancy flux. Now it is possible to go further and suggest a criterion 
for the maximum depth of the first layer formed as salt is added above a tempera- 
ture gradient. A similar argument to that used in $3, which will not be reproduced 
here, indicates that a relation of the form (21) will again apply, but with the roles 
of heat and salt just interchanged in the initial density gradient and buoyancy 
flux terms. A numerical constant (equivalent to R,.) remains to be determined, 
either by experiment or from a more detailed theory, and further discussion of 
this point will be deferred until more definite results can be reported. 

This work has been supported by a grant from the British Admiralty. 
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